010-82895447
NEWS

新闻中心

当前位置:首页新闻中心一文详解离子色谱仪

一文详解离子色谱仪

更新时间:2026-01-28点击次数:905

离子色谱法在上世纪70年代逐步发展起来的一种微量离子分析技术,在分析测定阴、阳离子、离子型化合物方面具有灵敏、快速、准确度高、选择多样等优点,获得很多研究人员及技术人员的青睐,随后离子色谱仪被广泛应用于环境监测、石油化工、农药、食品生产等行业。
离子色谱是实验室常用设备之一,由于样品组成及其浓度复杂,样品物理形态多变,对离子色谱仪的正常分析测定造成影响,为此,在使用仪器前,应安排专门人员进行必要的培训,实验人员对设备原理及维护进行全面掌握,使用及操作过程中注意仪器的维护和保养,才能熟练掌握离子色谱分析技术,满足不同行业的应用需求。现以离子色谱仪为例,介绍并分析设备使用操作的注意事项及技巧。

离子色谱仪虽然市场上种类繁多,但是其结构主要包括泵液系统、进样系统、色谱分离柱、检测器、数据处理五个部分组成。

离子色谱仪工作原理图

 

一、工作原理:充分利用固定相与流动相间的交换作用,固定相中离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子在分离色谱柱中滞留时间长短不同,分析物溶质与交换剂之间亲和力的差异性进行分离。

离子色谱仪测定常见阴离子效果比较好,比较适用于亲水性阴、阳离子的分离。色谱仪便于检测的常见阴离子包括:F-,Cl-,Br-,NO2-,PO43-,NO3-,SO42-等;

检测的阳离子主要包括:Li+,Na+,NH4+,K+,Ca2+,Mg2+,Cu2+,Zn2+,Fe2+,Fe3+等。

离子色谱仪具有快速、高效、准确等优点,对于高浓度样品的检测,检测结果不太理想,只有把高浓度样品进行稀释,然后再进行测定分析。而且其测定的范围也比较有限,设备使用过程需要经常维护,才能确保其性能良好。

离子色谱仪
二、操作流程

离子色谱仪工作流程基本大同小异。其流程主要为:

1、对淋洗液系统进行必要检查,打开氩气气瓶开关,调节减压阀指示为0.2-0.3Mpa;打开淋洗液系统气源装置,调节减压阀,使指示表显示为3-6PSi。

2、分别按顺序打开主机-电脑-打印机等设备电源开关,对设备进行上电操作。

3、系统处理及控制系统上电接通后,进入操作界面,并进入系统操作面板,准备操作前的准备及管理工作。

4、打开泵。如色谱分析仪长时间不使用或更换淋洗液后,要先打开平衡泵头上的PRIME阀排气后再开泵,待泵压力稳定后再打开抑制器电源。

5、在进入色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱柱, 在色谱柱中各组分被分离, 并依次随流动相流至检测器。

6、检测器检测到的信号送至数据系统,利用操作界面做完样后,选择检测标准进入数据处理,对采集数据进行记录、处理、打印或者保存等操作。

7、关机,系统关机需要根据检测样品不同选择不同关机步骤。对于阴阳离子,需要先将抑制器电流关掉,然后再关泵,最后关主机。

离子色谱仪

 
三、使用注意事项

1、流动相瓶中滤头要注意始终处于液面以下,防止将溶液吸干。

2、启动泵前观察从流动相瓶到泵之间的管路中是否有气泡,如果有则应将其排除。排除方法如下:先将与泵相连的塑料流路接头拧下来,用洗耳球吸满去离子水,从与泵段相连的流路管中注入,将流路管中的气泡排除干净。然后再将流动相瓶(一般为去离子水瓶)抬高,再将流路接头与泵连接好。启动泵,打开泵内排气阀选钮,将泵内气泡排除干净,一般观察为流出液比较均匀,再将泵排气阀拧紧。(注意:此项操作时,整个流路是与色谱柱断开的)

3、用去离子水或流动相清洗整个流路时,可以采用大流量清洗(一般可将流量设置为2.0ml/min,但不能再太大)以缩短清洗时间,但在通流动相接色谱柱时需要将流量调整为色谱柱使用流量条件。操作如下:先将泵停止,再按动正号或负号,将光标调整至流量位置,按下确认键,再通过调节正负号将流量调节至色谱柱使用条件后,再按确认键。此时需要等待5s后再启动泵开关。接色谱柱时注意先将接头在色谱柱前端抵上2-5s,将色谱柱前端气泡排除后再将接头拧紧。待色谱柱下端流出溶液后,在将色谱柱下端接头拧上。(注意:接头不能拧的太紧,防止将管路卡的太紧而造成系统压力增大,拧的程度以不漏液为宜)

4、使用阴离子色谱柱检测,通流动相时注意将电流旋钮打开,调节至70±5mA,实验完毕,在关闭高压泵以前将电流关闭。

5、进样时阀的扳动要注意,不能太快,以免损伤阀体;也不能太慢,以免造成样品流失。在进样过程中,要严格按清洗程序操作,以减小前次样品残留对本次检测的影响。

离子色谱仪

 

四、维护

1、对泵的维护:

(1)每次仪器使用前,通水20min,用于清洗泵和整个流路。

(2)每次实验完毕,通水20min,将泵中残留的流动相清洗干净。(注意:此步非常重要,直接关系到泵的正常使用)

(3)仪器长时间不用,一周得通去离子水一次。用于替换泵中已经滋生了少量微生物的去离子水。去离子水如果长期放置,会促使少量微生物的繁殖,微生物容易粘附在泵内的单向阀上。

2、对色谱柱的维护:

(1)进入色谱柱的样品,均需要对其进行前处理。样品中固体悬浮物、有机物和重金属是影响色谱柱柱效的三大因素。固体悬浮物的消除:使用0.45或0.22微米孔径的微孔滤膜将样品过滤即可。有机物:固态样品,其各检测组份对高温仍比较稳定的,可以采用高温灰化-淋洗液或去离子水浸取法将有机,直接IC检测。液态样品,可以采用22%双氧水微波消解1.5h除去有机物后调节PH至中性,直接IC进样检测。(注意溶液浓度之间的换算)重金属:可以将样品流经阳离子交换树脂除去重金属后直接IC进样。

(2)组份高含量样品影响色谱柱柱效。高Cl-样品的处理:将样品通过Ag处理柱将Cl-除去后进样或稀释后进样分析。高SO42-样品的处理:将样品通过Ba处理柱将SO42-除去后进样或稀释后进样分析。

(3)实验操作完毕,色谱柱用淋洗液密封保存。

3、对抑制器的维护:

通阴离子淋洗液时将电流旋钮打开,阴离子检测完成关闭泵以前将电流旋钮关闭。

五、常见问题及解决办法

1、电导检测器常见故障电导检测器常见故障是检测池被污染。

故障原因:污染物主要来源于没有经过适当前处理的样品,如浓度过高、复杂的样品基体等。

2、分析泵常见故障故障现象:基线的噪声加大,色谱峰形变差(出现乱峰)。解决办法:分析泵常见故障是泵内产生气泡和漏液。

3、抑制器使用中的常见故障与排除

抑制器在离子色谱仪中具有举足轻重的作用。抑制器工作性能的好坏对分析结果有很大的影响。抑制器最常见的故障是漏液,使峰面积减小(灵敏度下降)和背景电导升高。

(1)峰面积减小

造成峰面积减小的主要原因有:微膜脱水、抑制器漏液、溶液流路不畅和微膜被玷污。抑制器长期不用,会发生微膜脱水现象,为激活抑制器,可用注射器向阴离子抑制器内以淋洗液流路相反的方向注入少许0.2mol/L的硫酸溶液。同时向再生液进口注入少许纯净水,并将抑制器放置半小时以上。抑制器内玷污的金属离子可以用草酸钠清洗。

(2)背景电导值高

在化学抑制型电导检测分析过程中,若背景电导高,说明抑制器部分存在一定的问题。大多数是操作不当引起的。例如淋洗液或再生液流路堵塞,系统中无溶液流动造成背景电导偏高或使用的电抑制器电流设置的太小等。膜被污染后交换容量下降亦会使背景电导升高。而失效的抑制器在使用时会出现背景电导持续升高的现象,此时应更换一支新的抑制器。

(3)漏液

抑制器漏液的主要原因是抑制器内的微膜没有充分水化。因此,长时间未使用的抑制器在使用前应让微膜水溶胀后再使用。另外要保证再生液出口顺畅,因此反压较大时也会造成抑制器漏液。另外抑制器保管不当造成抑制器内的微膜收缩、破裂也会发生漏液现象。

4、由流动相到泵之间的管路中有气泡,怎么排除?

排除方法如下:先将与泵相连的塑料流路接头拧下来,用洗耳球吸满去离子水,从与泵段相连的流路管中注入,将流路管中的气泡排除干净。然后再将流动相瓶(一般为去离子水瓶)抬高,再将流路接头与泵连接好。启动泵,打开泵内排气阀选钮,将泵内气泡排除干净,一般观察为流出液比较均匀,再将泵排气阀拧紧。(注意:此项操作时,整个流路是与色谱柱断开的)

5、泵单向阀堵塞会有哪些现象?怎么操作?

在如果泵单向阀上粘上了微生物造成堵塞会造成泵吸液不上,明显的现象是,在废液管没有流液或启动泵时没有液体流出或溶液流出速度很慢。单向阀如果堵塞了,我们需要对其进行清洗,清洗方法如下:

先将流路接头和接头1全部拧下,再将左侧接头2拧下,用镊子将两单向阀取出(在取单向阀时注意它是有方向的,在单向阀中有一个小圈圈,离小圈圈近的一端为液体的入口),放入50ml烧杯中,加入无水乙醇盖过两个单向阀,放入超声波清洗30min,然后按照1:1的比例加入10%的HNO3(用无水乙醇稀释),清洗5min后,用去离子水将单向阀冲洗干净,将单向阀重新安装到泵中。(注意:接头不要拧的太紧,以免造成螺丝纹受损)


六、总结

离子色谱仪作为精密仪器,在快速和微量分析方面具有强的有优势,因此广泛应用于环境监测、化学工业、食品卫生等诸多领域。在使用离子色谱仪及维护保养设备过程中应严格按照仪器说明书的要求,正确操作,注意加强定期维护和保养,建立完善的维修日志,及时总结维修经验,才能获得理想的分析结果,减少故障率,延长设备使用寿命。

详解离子色谱仪

离子色谱,简称IC(Ion Chromatography),是分析阴离子和阳离子的一种液相色谱。

作为近20年来发展最快的技术之一,离子色谱的应用已渗透到众多领域。应用范围从分析水中常见阴、阳离子和有机酸,发展到分析极性化合物、氨基酸、糖、重金属和过渡金属及不同氧化态。[1]作为一种有效的痕量分析手段,由于其具有简便、高效、高灵敏度和重现好的特点,离子色谱已在许多领域代替了传统的化学分析方法,如蒸气锅中痕量Fe3+、Fe2+、Na+、K+等离子分析,已经广泛采用离子色谱法。同时,还可以分析不同价态的铬、二氧化硅、部分重金属,有机酸类。对于水处理中常用的混凝剂Al和Fe的残留浓度也能准确测定。

另外,离子色谱在环境、食品、卫生、石油开发、石油化工、高纯水和水文地层方面也已得到广泛应用[2]。经过多年的应用发展,离子色谱已逐渐被国内外分析领域所接受,并被一些国际上有影响的机构确定为标准分析方法或推荐方法,成为了一种很有发展前途的分析工具。

作为液相色谱中的一个重要分支,离子色谱具有以下特点:

(1)快速方便:对7种常见阴离子(F-、Cl-、Br-、NO2-、NO3-、SO42-、PO43-)和6种常见阳离子(Li+、Na+、NH4+、K+、Mg2+、Ca2+)的平均分析时间已分别小于8 min。用高效快速分离柱对上述7种最重要的常见阴离子的基线分离只需3 min。

(2)灵敏度高:离子色谱分析的浓度范围为1 μg/L至数百mg/L。采用电导检测,直接进样量约为25 μL,且对常见阴离子的检出限小于10 μg/L。

(3)选择性好:IC法分析无机和有机阴、阳离子的选择性可通过选择恰当的分离方式、分离柱和监测方法来达到。与HPLC相比,IC中固定相对选择性的影响较大。

(4)可同时分析多种离子化合物:与光度法、原子吸收法相比,IC的主要优点是可同时检测样品中的多种成分,只需很短的时间就可得到阴、阳离子以及样品组成的全部信息。

(5)分离柱的稳定性好、容量高:与HPLC中所用的硅胶填料不同,IC柱填料的高pH值稳定性允许用强酸或强碱作淋洗液,有利于扩大应用范围。

2 离子色谱仪发展历史

提到离子色谱,就避不开“色谱”二字。作为一种分离的技术,色谱随着现代化学技术的发展应运而生。20世纪初在波兰植物化学家茨维特(Twseet)首先将植物提取物放入装有碳酸钙的玻璃管中,植物提取液由于在碳酸钙中的流速不同分布不同,因此在玻璃管中呈现出不同的颜色,这样就可以对各种不同的植物提取液进行有效的成分分离。

到1907年,茨维特的论文用俄文公开发表,他把这种方法命名为chromatography,即中文的色谱,这就是现代色谱这一名词的来源。

20世纪20年代,许多植物化学家开始采用色谱方法对植物提取物进行分离,色谱方法才被广泛地应用。

到20世纪40年代,以Martin为首的化学家建立了一整套色谱的基础理论,使色谱分析方法从传统的经验方法总结归纳为一种理论方法,马丁等人还建立了气相色谱仪器,使色谱技术从分离方法转化为分析方法。

20世纪50年代以后,由于战后重建和经济发展的需要,化学工业特别是石油化工得到广泛的发展,亟需建立快速方便有效的石化成分分析,而石化成分十分复杂,结构十分相似,且多数成分熔点又比较低,气相色谱正好吻合石化成分分析的要求,效果十分明显有效,同样石化工业的发展也使色谱技术特别是气相色谱得到广泛的应用,气相色谱的仪器也不断得到改进和完善,气相色谱逐渐成为一种工业分析不可少的手段和工具。

20世纪60年代,气相色谱分析法逐渐趋于成熟,但20世纪60年代以来,生物技术飞速发展,生物成分复杂,相对分子质量大而且熔点沸点高,在高温条件下易分解,因此用气相色谱作为分析方法已经不能满足对生物成分分析测试的要求,于是人们就重新考虑采用液相色谱,并进一步提高传统的液相色谱的分离效率,因此液相色谱成为一种分析工具,即高效液相色谱(HPLC)。

与传统液相色谱不同的是,高效液相色谱采用了高压泵及很细的颗粒填料,高效色谱柱可以对许多成分进行高效分离和分析,由于高效液相色谱通常采用紫外可见光检测,而大多数有机化合物均有紫外可见吸收,因此高效液相色谱可以对大量有机化合物进行分析。它在生物科学中得到了广泛的应用,特别是对具有高沸点高熔点的生物材料的分析检测。

20世纪70年代以后,国际上不论是气相色谱还是高效液相色谱,均成为各行各业不可少的分析工具,广泛应用于各个生产研究领域。

1975 年,Small[3]成功地解决了用电导检测器连续检测柱流出物的难题,即采用低交换容量的阴离子或阳离子交换柱,以强电解质作流动相分离无机离子,流出物通过一根称为抑制柱的带相反电荷的离子交换树脂柱。这样,将流动相中被测离子的反离子出去,使流动相背景电导降低,从而获得高的检测灵敏度。从此,有了真正意义上的离子色谱法,IC 也从此作为一门色谱分离技术从液相色谱法中独立出来。

1979 年,Gjerde等开始采用弱电解质作流动相。因流动相本身的电导率较低,不用抑制柱就可以用电导检测器直接检测。人们把使用抑制柱的离子色谱法称作双柱离子色谱法( double column IC) 或抑制型离子色谱法( suppressed IC) ,把不使用抑制柱的离子色谱法称作单柱离子色谱法( single column IC) 或非抑制型离子色谱法( nonsuppressed IC)。

我国从20世纪80年代开始引进离子色谱仪器,在我国八五九五科技攻关项目中均列有离子色谱国产化的项目,对其进行了重点技术攻关,对离子色谱技术的高度重视使得市场上逐渐出现相关的中国产品。

 

3 离子色谱仪基本结构

 

离子色谱仪主要由淋洗液系统、色谱泵系统、进样系统、流路系统、分离系统、化学抑制系统、检测系统和数据处理系统等组成,如图1.

详解离子色谱仪

图1 离子色谱仪的组成

(1)淋洗液系统:

离子色谱仪常用的分析模式为离子交换电导检测模式,主要用于阴离子和阳离子的分析。常用阴离子分析淋洗液有OH根体系和碳酸盐体系等,常用阳离子分析淋洗液有甲烷磺酸体系和草酸体系等。淋洗液的一致性是保证分析重现性的基本条件。为保证同一次分析过程中淋洗液的一致性,在淋洗液系统中加装淋洗液保护装置,可以将进入淋洗液瓶的空气中的有害部分吸附和过滤,如CO2和H2O等。

(2)色谱泵系统:

离子色谱的淋洗液为酸、碱溶液,与金属接触会对其产生化学腐蚀。如果选择不锈钢泵头,腐蚀会导致色谱泵漏液、流量稳定性差和色谱柱寿命缩短等。离子色谱泵头应选择全PEEK材质(色谱柱正常使用压力一般小于20 MPa)。色谱泵类型包括单柱塞泵和双柱塞泵,双柱塞泵又包括串联双柱塞泵和并联双柱塞泵。

(3)分离系统:

分离系统是离子色谱的重要部件,也是主要耗材。分离系统包括预柱、保护柱和分析柱。预柱又称在线过滤器,PEEK材质,主要作用是保证去除颗粒杂质;保护柱与分析柱填料相同,消除样品中可能损坏分析住填料的杂质。如果不一致,会导致死体积增大、峰扩散和分离度差等;分析柱主要功能是有效分离样品组分。

(4)化学抑制系统:

抑制系统是离子色谱的核心部件之一,主要作用是降低背景电导和提高检测灵敏度。抑制器的好坏关系到离子色谱的基线稳定性、重现性和灵敏度等关键指标,包括柱-胶抑制、离子交换膜抑制和电解自再生膜抑制等。

柱-胶抑制采用固定短柱或现场填充抑制胶进行抑制,不同的抑制柱交替使用,属于间歇式抑制;离子交换膜抑制采用离子交换膜,利用离子浓度渗透的原理进行抑制。但需要配制硫酸再生液,系统需要配置氮气或动力装置;电解自再生膜抑制则是利用电解水产生的媒介离子配合离子交换膜进行抑制,一般情况下是选择。

(5)检测系统:

离子色谱最基本和常用的检测器是电导检测器,其次是安培检测器。电导检测器包括四极电导检测器和五极电导检测器等,是基于极限摩尔电导率应用的检测器,主要用于检测无机阴阳离子、有机酸和有机胺等。

四极电导检测器指在流路上设置四个电极,在电路设计中维持两测量电极间电压恒定,不受负载电阻、电极间电阻和双电层电容变化的影响,具有电子抑制功能(阳离子检测支持直接电导检测模式)。五极电导检测器则是在四极电导检测模式中加一个接地屏蔽电极,极大提高了测量稳定性,在高背景电导下仍能获得极低的噪声,具有电子抑制功能(阳离子检测支持直接电导检测模式)。

安培检测器分为直流安培检测模式、脉冲安培检测模式等,是基于测量电解电流大小为基础的检测器,主要用于检测具有氧化还原特性的物质。

其中,直流安培检测模式主要用于抗坏血酸、溴、碘、氰、酚、硫化物、亚硫酸盐、儿茶酚胺、芳香族硝基化合物、芳香胺、尿酸和对二苯酚等物质的检测。脉冲安培检测模式则主要用于醇类、醛类、糖类、胺类(一、二、三元胺,包括氨基酸)、有机硫、硫醇、硫醚和硫脲等物质的检测。

 

4 离子色谱仪的工作原理

 

离子色谱仪的工作过程是:输液泵将流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导入,流动相将样品带入色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,抑制型离子色谱则在电导检测器之前增加一个抑制系统,即用另一个高压输液泵将再生液输送到抑制器,在抑制器中,流动相的背景电导被降低,然后将流出物导入电导检测池,检测到的信号送至数据系统记录、处理或保存,如图2所示。

详解离子色谱仪

图2 典型离子色谱仪的工作流程图

分离的原理是基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。离子色谱主要适用于亲水性阴、阳离子的分离。分离机理主要是离子交换,细分起来有3种分离方式:高效离子交换色谱(HPIC)、离子排斥色谱(HPIEC)和离子对色谱(MPIC)。

三种分离方式的柱填料的树脂骨架基本都是苯乙烯-二乙烯基苯的共聚物,但树脂的离子交换功能基和容量各不相同。HPIC用低容量的离子交换树脂,HPIEC用高容量的树脂,MPIC用不含离子交换基团的多孔树脂。3种分离方式各基于不同分离机理。HPIC的分离机理主要是离子交换,HPIEC主要为离子排斥,而MPIC则是主要基于吸附和离子对的形成。

高效离子交换色谱:应用离子交换的原理,采用低交换容量的离子交换树脂来分离离子,这在离子色谱中应用广泛,其主要填料类型为有机离子交换树脂,以苯乙烯二乙烯苯共聚体为骨架,在苯环上引入磺酸基,形成强酸型阳离子交换树脂,引入叔胺基而成季胺型强碱性阴离子交换树脂,此交换树脂具有大孔或薄壳型或多孔表面层型的物理结构,以便于快速达到交换平衡。离子交换树脂耐酸碱可在任何pH范围内使用,易再生处理、使用寿命长,缺点是机械强度差、易溶易胀、受有机物污染。离子交换色谱是常用的离子色谱。

离子排斥色谱:主要根据Donnon膜排斥效应,电离组分受排斥不被保留,而弱酸则有一定保留的原理,制成离子排斥色谱主要用于分离有机酸以及无机含氧酸根,如硼酸根碳酸根和硫酸根有机酸等。它主要采用高交换容量的磺化H型阳离子交换树脂为填料,以稀盐酸为淋洗液。

离子对色谱:固定相为疏水型的中性填料,可用苯乙烯二乙烯苯树脂或十八烷基硅胶(ODS),也有用C8硅胶或CN,而流动相则由含有所谓对离子试剂和含适量有机溶剂的水溶液组成。对离子是指其电荷与待测离子相反,并能与之生成疏水性离子。对于化合物的表面活性剂离子,用于阴离子分离的对离子是烷基胺类,如十六烷基三甲烷等,用于阳离子分离的对离子是烷基磺酸类,

如己烷磺酸钠、庚烷磺酸钠等。对离子的非极性端亲脂,极性端亲水,其CH2键越长则离子对化合物在固定相的保留越强。在极性流动相中,往往加入一些有机溶剂,以加快淋洗速度,此法主要用于疏水性阴离子以及金属络合物的分离。

 

5 操作流程

 

离子色谱仪虽然种类较多,但其工作流程基本大同小异。其流程主要为:

(1)对淋洗液系统进行必要检查,打开氩气气瓶开关,调节减压阀指示为0.2~0.3 Mpa;打开淋洗液系统气源装置,调节减压阀,使指示表显示为3~6 psi。

(2)分别按顺序打开主机-电脑-打印机等设备电源开关,对设备进行上电操作。

(3)系统处理及控制系统上电接通后,进入操作界面,并进入系统操作面板,准备操作前的准备及管理工作。

(4)打开泵。如色谱分析仪长时间不使用或更换淋洗液后,要先打开平衡泵头上的PRIME阀排气后再开泵,待泵压力稳定后再打开抑制器电源。

(5)在进入色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱柱, 在色谱柱中各组分被分离, 并依次随流动相流至检测器。

(6)检测器检测到的信号送至数据系统,利用操作界面做完样后,选择检测标准进入数据处理,对采集数据进行记录、处理、打印或者保存等操作。

(7)关机,系统关机需要根据检测样品不同选择不同关机步骤。对于阴阳离子,需要先将抑制器电流关掉,然后再关泵关机。

 

6 应用实例

 

随着科学技术的发展和人民生活水平的提高,离子色谱逐渐进入人们的视野。目前,离子色谱法已被应用于食品分析、药物分析、环境监测等方面,且在化工、材料、农业等领域也有着较为广泛的应用。

实例1:以硝酸盐,亚硝酸盐和磷酸盐的形式存在的杂质污染,是普遍的水质问题。传统的检测方法具有许多缺点,检测效果也是不尽如意。多年来,相关科研工作者已经开发了各种方法和分析系统来对水生环境进行实时的原位成分分析。然而,这些系统的使用和应用受到功率需求,尺寸,试剂使用或成本的限制。此外,电化学传感器被广泛用于快速分析水中的硝酸盐和亚硝酸盐。这些传感器具有成本效益,但考虑其长期工作时,经常会因电极结垢和分析物随时间的漂移而使其功能受到阻碍。迄今为止,基于离子色谱法的分析仪以及直接的紫外线吸收系统已被证明是实现原位硝酸盐和亚硝酸盐分析的主要途径。

Murray等人[4] 采用离子色谱仪对水中杂质进行了成分分析,基于简单的阴离子交换方法,使用KOH洗脱液结合AG15保护柱来实现快速的阴离子分离。通过使用基于235 nm LED的吸光度检测器,可以选择性,直接地检测亚硝酸盐和硝酸盐。作者选择位于淡水和高污染废水之间的50μL样品定量环体积,连续分析包含15 mg L-1 NO3-和10 mg L-1 NO2-的阴离子标准液。依次进样的色谱图重叠时,仪器获得的色谱图重复性如图3所示。在82次运行中,亚硝酸盐和硝酸盐的峰面积RSD值分别为3.87%和3.91%。发现亚硝酸盐和硝酸盐的保留时间RSD值分别为3.59%和3.23%,这表明了离子色谱在水质检测中的突出应用价值。

 

详解离子色谱仪

图3 82次连续运行后叠加的所选色谱图

实例2:目前,农用硫酸铵的来源非常广泛,包括己内酰胺副产硫酸铵、氨法脱硫副产硫酸铵、磷石膏转制硫酸铵等不同行业的副产硫酸铵,这些副产硫酸铵中可能存在氟、氯、溴、硫氰酸盐等杂质。有研究表明,氟离子含量过高会抑制玉米、大麦、小麦、豌豆、三叶草、菠菜的生长,造成作物减产;长期处在高浓度氯离子环境中,对氯敏感植物会导致死亡,对氯不敏感的植物也会造成一定的抑制作用;植物中溴离子含量一般在1~535 mg/kg,若土壤环境中溴离子含量过高,有可能对农作物造成危害;当硫氰酸根离子浓度大于5 mg/L时,对植物尤其是农作物就会产生危害。因此,农用硫酸铵作为一类氮肥,直接施用硫酸铵易使土壤板结,对土壤环境不友好,多用作复合肥料、掺混肥料等其他肥料产品的原料。为保障肥料产品质量,保障农作物安全,建立农用硫酸铵中杂质阴离子的检测方法非常必要。

刘爽等人[5]采用离子色谱法测定了农用硫酸铵中4种杂质阴离子。在样品前处理时,需通过Ba离子柱过滤除去试液中的硫酸根离子。研究中Ba离子柱的容量为2.0~2.2 meq/ml,实验过程中分别对未使用Ba离子柱净化及使用该柱净化的样品进行测试,结果表明,未使用Ba离子柱净化的样品,SO42-离子拖尾,严重干扰SCN-的测定,色谱图如图4左图所示,无法计算加标回收率;使用Ba离子柱净化的样品,在保留时间20 min左右基线平稳,对SCN-的测定无影响,色谱图如图4右图所示。经Ba离子柱净化后样品回收率在80.23%~111.5%,可满足实验室分析要求。利用本方法可以同时检测农用硫酸铵中4种常见杂质阴离子含量,方法简单、快捷、准确,因而值得推广应用。

详解离子色谱仪

图4 净化前后样品的离子色谱图

应用实例

离子色谱技术已被广泛应用于食品分析、药物分析、环境监测等领域。例如,在水质检测中,离子色谱法被用于分析水中的硝酸盐、亚硝酸盐和磷酸盐等杂质。在农业领域,离子色谱法也被用于测定农用硫酸铵中的杂质阴离子,以保障肥料产品的质量。这些应用实例展示了离子色谱技术在实际分析中的有效性和重要性。

详解离子色谱仪
电路板阳离子浓度测试

关注公众号,了解最新动态

关注公众号
010-82895447

Copyright © 2026 北京历元电子仪器有限公司版权所有

技术支持:化工仪器网    sitemap.xml